Non-special, non-canal isothermic tori with spherical lines of curvature
نویسندگان
چکیده
منابع مشابه
Special Isothermic Surfaces and Solitons
We establish a correspondence between Darboux’s special isothermic surfaces of type (A, 0, C, D) and the solutions of the second order p.d.e. Φ∆Φ − |∇Φ| + Φ = s, s ∈ R. We then use the classical Darboux transformation for isothermic surfaces to construct a Bäcklund transformation for this equation and prove a superposition formula for its solutions. As an application we discuss 1 and 2-soliton ...
متن کاملcommuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولLines of principal curvature on canal surfaces in R3.
In this paper are determined the principal curvatures and principal curvature lines on canal surfaces which are the envelopes of families of spheres with variable radius and centers moving along a closed regular curve in R3. By means of a connection of the differential equations for these curvature lines and real Riccati equations, it is established that canal surfaces have at most two isolated...
متن کاملQueens on Non-square Tori
We prove that for m < n, the n × m rectangular toroidal chessboard admits gcd(m,n) nonattacking queens except in the case m = 3, n = 6. The classical n-queens problem is to place n queens on the n × n chessboard such that no pair is attacking each other. Solutions for this problem exist for all for n = 2, 3 [1]. The queens problem on a rectangular board is of little interest; on the n ×m board ...
متن کاملNon-linear ergodic theorems in complete non-positive curvature metric spaces
Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2000
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-00-02691-x